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Abstract. Particle-In-Cell (PIC) codes are often used to study systetmere the details of phase-
space are important; for example, self trapping or optigakition in laser-plasma accelerators. Here
we investigate the numerical heating and macro-partiajedtory errors in 2D PIC simulations of
laser-plasma accelerators. The effects of grid resolwimh laser polarization on the momentum
spread and on subsequent spurious trapping in a plasma wavedied. It is shown that when
the laser is polarized in the plane of the simulation, whidmits the 3D behavior, the macro-
particles are subject to trajectory errors resulting ingllthomentum spread. The phase-space error
associated with this momentum spread results in unphysaggbing. Smoother particle shapes are
considered to reduce the interpolation errors. With thebermmes, the macro-particle trajectories
are more accurately modeled and unphysical momentum sizreaduced.
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INTRODUCTION

Particle-in-cell (PIC) codes [1, 2] are a widely used tooltiady laser plasma interac-
tions, and in particular, have been used extensively to hader-plasma based accel-
erator experiments [3], where a large amplitude wave isedrivy a short laser pulse,
and background electrons can become trapped in the plaskeeand be accelerated to
high energies [4].

In a particle-grid approach such as PIC, finite-sized, clthtgecro-particles” inter-
act with electromagnetic fields defined on a grid. The unald& discretization of the
physical model and the necessarily small number of macrticfes relative to the num-
ber of physical electrons both give rise to unphysical Imggtl, 2]. In addition, since the
macro-particle positions are not restricted to mesh ppgsae form of interpolation is
necessary to evaluate the force, resulting in trajectayrer These numerical heating
mechanisms will alter phase space and can mimic physicakpses leading to incor-
rect interpretation of computational results. This hegtifll be of particular importance
when attempting to model detailed kinetic effects, suchrasping of the background
electrons or generation of dark current in a plasma-bassslexator.

In the following we study the effect of the unphysical hegtin PIC codes in the
particular case of a weakly non-linear plasma wave drivei Isfort laser pulse. The
normalized laser intensity & = 1.15 wheread ~ 7.32 10~ (Ag[um])?1o]W /cn?] for
a linear polarized laser pulse of wavelengihand intensitylp. The laser propagates



in a parabolic plasma channel matched to its spot siz¢3]. On axis the density
of the plasma is such thaty/wp = 10 wherew, = ko€ = (41mee?/me)Y/? is the
plasma frequency at the density, andwy = 21C/Ag. The 2D simulation box is 6Am
long and 153um wide. The macro-particles are loaded uniformly and coldirtial
momentum), using 4 macro particles per cell. For the sinarat we use a modified
version of Plasma Simulation Code (PSC) [5], which impleméhts standard PIC
algorithm [1] and uses a charge-conserving current-déposcheme [6].

For this illustrative case we expect no self-trapping inwlad&e because the plasma is
loaded cold, and the laser intensity is sufficiently low stidt the longitudinal plasma
wakefieldE; < Eg, whereEg = meczkp/e is the cold, one-dimensional nonrelativistic
wavebreaking-field. For a cold plasma, the particle orbits identical to the cold
fluid orbits, and thus trapping can only occur in conjunctwith a singularity in the
plasma density. The cold fluid model [7] does not show singplasma density for
these parameters, which is a definitive indication thatettedrould be no trapping in
this example. Note that the evolution of the plasma tempesabas previously been
studied using a warm fluid model [8, 9], which predicts thairatnally cold collisionless
plasma remains cold in this regime; i.e., a delta functiommotum distribution remains
a delta function and is an exact solution of the Vlasov equafl hus we expect that the
PIC simulation with an initially cold plasma should converg the cold fluid result.
However, the PIC simulations show macro-particles trappetihe wake, as seen in
Fig. 1. Note that at this resolution the longitudinal electreld is almost converged.
For definiteness we consider trapped macro-particles pgfimec > 1, which is the
peak momentum for untrapped particles in this case. Thp#dpharge depends on the
resolution, number of macro-particles per cell used anchendaser polarization. The
observed trapping is due to the numerical heating of thendashe associated increase
of momentum spread leads to the trapping in the wake [10].

This case is near the trapping threshold and is thus quitsitsento numerical
heating. Such test cases are of interest since thresholvioein is important, even
when the trapping results from an instability such as Ramattesing, in determining
guantities such as bunch size, emittance and energy spread.
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FIGURE 1. Longitudinal phase-space of the electronsugit ~ 218, with the laser polarized (a) in the
plane of the simulation, (b) out of the plane of the simulatidhe resolution islx = Ap/2.5=rp/32 and
dz= )\0/24.



POLARIZATION DEPENDENCE

Shown in Fig. 2 are the macro-particle orbits. For the cadasdr polarization out of
the simulation plane [see Fig. 2(b)] the trajectories ofrtleero-particles correspond to
a nearly laminar flow, which is the expected result for anaflit cold plasma. However,
when the laser is polarized in the plane of the simulatioe [Sig. 2(a)] interpolation
errors lead to significant perturbation of the macro-plrticbits near the end of the laser
pulse, i.e., the macro-particles experience a field intatfpm error owing to the under-
resolved grid, leading to an error in the momentum advandierfast (u/wp > 1)
laser oscillations.

The error introduced by the field interpolation at the maadiple position is esti-
mated by introducing analytically prescribed fields, araklog at test particle orbits in
the transverse plane, the laser being polarized in this gdame (i.e. thex direction).

In Fig. 3(a) two test particles are initially loaded on axdarfie transverse position) and
in the same cell but separated longitudinally d®/2, wheredz is the grid size along
the direction of laser propagation. After the laser pulse,ttvo particles have different
final momenta, which gives rise to trajectory crossing seeRig. 2(a). Figures 3(b)
and 3(c) show the effect of the different resolutions on taeigle trajectory error. The
main role is played by the longitudinal resolution which d&éo well resolve the laser
wavelength; a resolution of at leat < Ap/50 is necessary to reduce the macro-particle
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FIGURE 2. Macro-particle orbits atopt ~ 55, for transverse resolutiaix = Ag/2.5 and longitudinal
resolutiondz = Ap/24. (a) The laser is polarized in the plane of the simulatfphThe laser is polarized
out of the plane of the simulation. Note that the laser isem®ut akpx ~ 60.
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FIGURE 3. Orbit of two test particles initially on axis and in the sana avith: (a) dx=dz= Ap/24
using linear interpolation, (ljx = Ap/24 and different longitudinal resolutions using lineaenmidlation,
(c) dz= Ap/48 and different transverse resolutions using linear jpuiation, and (dpx = dz = Ap/24
using parabolic particle shape.
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FIGURE 4. Macro-particle orbits atopt ~ 55, for transverse resolutiaix = Ag/2.5 and longitudinal
resolutiondz = Ap/24, using (a) parabolic and (b) cubic particle shapes.

trajectory error to a negligible level.

Using smoother particle shapes significantly decreasesdjeetory error. PIC codes
typically use linear weighting, also called Cloud-In-Cell[1higher order interpolation
schemes (smoother particle shapes) are obtained by camydive square (Nearest-
Grid-Point) weighting function with itselfntimes (see Ref. [1] Sect. 8-8, Ref. [2]
Sect. 5-3-4 and Ref. [12]), the scheme remaining charge oangeThe macro-particle
orbits with the quadratic and cubic particle shapes are showigs. 4(a) and Fig. 4(b),
respectively, the laser being polarized in the simulatilame. In these cases the macro-
particles follow a laminar flow as expected. Indeed, Fig) 3ftbws that the trajectory
error inside the laser pulse, with the quadratic partickpsh is suppressed. In Fig. 4(a)
we still notice macro-particle orbit separation owing te tiumerical heating, which is
absent from Fig. 4(b).

Shown in Fig. 5 are macro-particle trajectories computedguknear interpolation
with the addition of smoothing using a (1,2,1) filter with goemsator (See Ref. [1]
Appendix C and Ref. [13]) on the current densities. As exgkaie see a reduction of
the heating when the laser is polarized out of the plane afithalation, but significant
trajectory errors remain. This suggests that smootheicpaghapes are more efficient
than smoothing for obtaining accurate trajectories.
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FIGURE 5. Macro-particle orbits atopt ~ 55, for transverse resolutiaix = Ag/2.5 and longitudinal
resolutiondz = Ap/24, using the linear interpolation scheme and current shiogtwith compensator:
(a) in the plane polarization and (b) out of the plane poéditn.



PLASMA TEMPERATURE

We can distinguish two heating mechanisms [Fig. 7(c)]: teciaig [14], with a con-

tinuous slow growth rate due to the finite number of macrdiglas, which depends
mainly on the number of macro-particles per cell and on theigha shape; and
grid heating [15], with a fast growth rate and saturates whgn- dz in 1D, where

Ap = (T/4nne2)1/2 is the Debye length, andlz the grid size.

Figure 6(a) shows the transvers&s momentum sprea(zix&X = ((ux— (ux))?) (where
Ux = px/MeC is the normalized momentum), on axis for the in and out of thegpo-
larization cases, using the linear interpolation schemeeWthe laser is polarized in the
plane of the simulation, it triggers a larger momentum sgrdae to the macro-particle
trajectory errors, and the grid heating saturation valueashed sooner. Figures 6(b)
and 6(c) show the resolution dependence, when the lasetagzsal out of the plane.
The grid heating is reduced when the transverse resolufign §(b)], i.e., the largest
grid size is reduced. Figure 7 shows the effect of using sheyqtarticle shapes. The
discrepancy between in and out of the plane polarizatioistias [Fig. 7(a)], since the
momentum spread introduced by the trajectory errors isreggpd; the temperature is
much lower after the laser pulse when using smoother paichpes [Fig. 7(b)]. The
cubic interpolation does not reduce the scattering indidddser pulse compare to the
guadratic scheme, but the scattering growth rate is lowter #fie laser and the grid
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FIGURE 6. Transverse momentum spread for linear particle shapex(a)Ao/2.5 anddz= Ag/24 in
and out of the plane polarizations, @3 = Ao/24, changing transverse resolution, andd)= Ao/2.5,
changing longitudinal resolution. The dashed box indie#te size of the simulation box used in Fig. 1.
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FIGURE 7. Transverse momentum spreaddiar= Ap/2.5 anddz= Ao/24: (a) quadratic particle shape,
in and out of the plane polarizations; (b) in the plane paktion, linear and quadratic, and (c) in the plane
polarization quadratic and cubic particle shapes.
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FIGURE 8. Amount of charge trappedpf/meC > 1) versus resolution, witlix = dz, for different
interpolation algorithms: (square) linear interpolati@ircle) quadratic interpolation, and (triangle) cubic
interpolation. Full and empty points are for, respectivélyand 16 macro-particles per cell. The laser is
polarized in the plane of the simulation.

heating is delayed [Fig. 7(c)]. Increasing the number ofnoigoarticles per cell also de-
creases the momentum spread due to scattering, for quadnakicubic particle shapes;
the effect is not present for linear interpolation as thepgerature is dominated by the
trajectory errors, when the laser is polarized in the pldrth@simulation.

The results are summarized in Fig. 8 where the number of éppacro-particles
in the 2D simulations has been normalized in order to giveaggh per meter. With
linear interpolation, the amount of trapping saturatesmthe grid becomes sufficiently
small dx, dz < Ap/36), i.e., reducing the grid is not sufficient to reduce thatimg. One
has to use more macro-particles per cell or use smootheclpasthapes because, at this
resolution, the temperature at which grid-heating sadsrdbes not lead to significant
trapping and heating due to macro-particle scatteringgwis independent on grid size)
dominates the phase-space errors. Indeed, the cubiclpatti@pe reduces significantly
the amount of trapped charge. Moreover, it is less compurtally expensive to use
smoother particle shapes than using more macro-particlé® case studied here is
close to the self-trapping threshold and, hence, conves&nslow; although using
the cubic particle shapes reduces the trapping to the lastia wave bucket in the
simulation window. This means than one may need to use raifjleresolution to reach
convergences in some cases, especially when one wantstonited the threshold for
trapping (e.g. when studying optical injection or dark eatrgeneration).

1 Quadratic particle shapes increase the computing time pyoajmately 25% and there is less than a
factor of two between the computational expense of the tingd the cubic interpolation schemes.



CONCLUSION

We have demonstrated that misleading results, e.g. sputiapping, can be obtained
with PIC codes if the resolution used is not sufficiently higarticularly when one stud-
ies phenomena close to the self-trapping threshold. We $tasven a strong dependence
of unphysical heating on the laser polarization with respethe plane of the 2D simu-
lation. In particular, the motion of the macro-particleshie laser pulse, when polarized
in the simulation plane, leads to trajectory errors, untbsslongitudinal resolution is
extremely high (i.e., higher than the resolutions typicaited to model laser-plasma
accelerators). Moreover, the grid heating imposes higblugen in all dimensions. We
have shown that using smoother particle shapes results or@ascurate description of
the particle motion and reduces the unphysical heatingeopthsma.
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