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Abstract. Particle-In-Cell (PIC) codes are often used to study systems where the details of phase-
space are important; for example, self trapping or optical injection in laser-plasma accelerators. Here
we investigate the numerical heating and macro-particle trajectory errors in 2D PIC simulations of
laser-plasma accelerators. The effects of grid resolutionand laser polarization on the momentum
spread and on subsequent spurious trapping in a plasma wave is studied. It is shown that when
the laser is polarized in the plane of the simulation, which mimics the 3D behavior, the macro-
particles are subject to trajectory errors resulting in a high momentum spread. The phase-space error
associated with this momentum spread results in unphysicaltrapping. Smoother particle shapes are
considered to reduce the interpolation errors. With these schemes, the macro-particle trajectories
are more accurately modeled and unphysical momentum spreadis reduced.
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INTRODUCTION

Particle-in-cell (PIC) codes [1, 2] are a widely used tool to study laser plasma interac-
tions, and in particular, have been used extensively to model laser-plasma based accel-
erator experiments [3], where a large amplitude wave is driven by a short laser pulse,
and background electrons can become trapped in the plasma wake and be accelerated to
high energies [4].

In a particle-grid approach such as PIC, finite-sized, charged "macro-particles" inter-
act with electromagnetic fields defined on a grid. The unavoidable discretization of the
physical model and the necessarily small number of macro-particles relative to the num-
ber of physical electrons both give rise to unphysical heating [1, 2]. In addition, since the
macro-particle positions are not restricted to mesh points, some form of interpolation is
necessary to evaluate the force, resulting in trajectory errors. These numerical heating
mechanisms will alter phase space and can mimic physical processes leading to incor-
rect interpretation of computational results. This heating will be of particular importance
when attempting to model detailed kinetic effects, such as trapping of the background
electrons or generation of dark current in a plasma-based accelerator.

In the following we study the effect of the unphysical heating in PIC codes in the
particular case of a weakly non-linear plasma wave driven bya short laser pulse. The
normalized laser intensity isa0 = 1.15 wherea2

0 ≈ 7.32 10−19(λ0[µm])2 I0[W/cm2] for
a linear polarized laser pulse of wavelengthλ0 and intensityI0. The laser propagates



in a parabolic plasma channel matched to its spot size,r0 [3]. On axis the density
of the plasma is such thatω0/ωp = 10 whereωp = kpc = (4πn0e2/me)

1/2 is the
plasma frequency at the densityn0, andω0 = 2πc/λ0. The 2D simulation box is 65µm
long and 153µm wide. The macro-particles are loaded uniformly and cold (no initial
momentum), using 4 macro particles per cell. For the simulations, we use a modified
version of Plasma Simulation Code (PSC) [5], which implementsthe standard PIC
algorithm [1] and uses a charge-conserving current-deposition scheme [6].

For this illustrative case we expect no self-trapping in thewake because the plasma is
loaded cold, and the laser intensity is sufficiently low suchthat the longitudinal plasma
wakefieldEz < E0, whereE0 = mec2kp/e is the cold, one-dimensional nonrelativistic
wavebreaking-field. For a cold plasma, the particle orbits are identical to the cold
fluid orbits, and thus trapping can only occur in conjunctionwith a singularity in the
plasma density. The cold fluid model [7] does not show singular plasma density for
these parameters, which is a definitive indication that there should be no trapping in
this example. Note that the evolution of the plasma temperature has previously been
studied using a warm fluid model [8, 9], which predicts that aninitially cold collisionless
plasma remains cold in this regime; i.e., a delta function momentum distribution remains
a delta function and is an exact solution of the Vlasov equation. Thus we expect that the
PIC simulation with an initially cold plasma should converge to the cold fluid result.
However, the PIC simulations show macro-particles trappedin the wake, as seen in
Fig. 1. Note that at this resolution the longitudinal electric field is almost converged.
For definiteness we consider trapped macro-particles withpz/mec > 1, which is the
peak momentum for untrapped particles in this case. The trapped charge depends on the
resolution, number of macro-particles per cell used and on the laser polarization. The
observed trapping is due to the numerical heating of the plasma; the associated increase
of momentum spread leads to the trapping in the wake [10].

This case is near the trapping threshold and is thus quite sensitive to numerical
heating. Such test cases are of interest since threshold behaviour is important, even
when the trapping results from an instability such as Raman scattering, in determining
quantities such as bunch size, emittance and energy spread.

FIGURE 1. Longitudinal phase-space of the electrons atωpt ≈ 218, with the laser polarized (a) in the
plane of the simulation, (b) out of the plane of the simulation. The resolution isdx = λ0/2.5 = r0/32 and
dz = λ0/24.



POLARIZATION DEPENDENCE

Shown in Fig. 2 are the macro-particle orbits. For the case oflaser polarization out of
the simulation plane [see Fig. 2(b)] the trajectories of themacro-particles correspond to
a nearly laminar flow, which is the expected result for an initially cold plasma. However,
when the laser is polarized in the plane of the simulation [see Fig. 2(a)] interpolation
errors lead to significant perturbation of the macro-particle orbits near the end of the laser
pulse, i.e., the macro-particles experience a field interpolation error owing to the under-
resolved grid, leading to an error in the momentum advance inthe fast (ω0/ωp ≫ 1)
laser oscillations.

The error introduced by the field interpolation at the macro particle position is esti-
mated by introducing analytically prescribed fields, and looking at test particle orbits in
the transverse plane, the laser being polarized in this sameplane (i.e. thex direction).
In Fig. 3(a) two test particles are initially loaded on axis (same transverse position) and
in the same cell but separated longitudinally bydz/2, wheredz is the grid size along
the direction of laser propagation. After the laser pulse, the two particles have different
final momenta, which gives rise to trajectory crossing seen in Fig. 2(a). Figures 3(b)
and 3(c) show the effect of the different resolutions on the particle trajectory error. The
main role is played by the longitudinal resolution which needs to well resolve the laser
wavelength; a resolution of at leastdz . λ0/50 is necessary to reduce the macro-particle

FIGURE 2. Macro-particle orbits atωpt ≈ 55, for transverse resolutiondx = λ0/2.5 and longitudinal
resolutiondz = λ0/24. (a) The laser is polarized in the plane of the simulation.(b) The laser is polarized
out of the plane of the simulation. Note that the laser is centered atkpx ≈ 60.
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FIGURE 3. Orbit of two test particles initially on axis and in the same cell with: (a) dx = dz = λ0/24
using linear interpolation, (b)dx = λ0/24 and different longitudinal resolutions using linear interpolation,
(c) dz = λ0/48 and different transverse resolutions using linear interpolation, and (d)dx = dz = λ0/24
using parabolic particle shape.



FIGURE 4. Macro-particle orbits atωpt ≈ 55, for transverse resolutiondx = λ0/2.5 and longitudinal
resolutiondz = λ0/24, using (a) parabolic and (b) cubic particle shapes.

trajectory error to a negligible level.
Using smoother particle shapes significantly decreases thetrajectory error. PIC codes

typically use linear weighting, also called Cloud-In-Cell [11]; higher order interpolation
schemes (smoother particle shapes) are obtained by convolving the square (Nearest-
Grid-Point) weighting function with itselfm-times (see Ref. [1] Sect. 8-8, Ref. [2]
Sect. 5-3-4 and Ref. [12]), the scheme remaining charge conserving. The macro-particle
orbits with the quadratic and cubic particle shapes are shown in Figs. 4(a) and Fig. 4(b),
respectively, the laser being polarized in the simulation plane. In these cases the macro-
particles follow a laminar flow as expected. Indeed, Fig. 3(d) shows that the trajectory
error inside the laser pulse, with the quadratic particle shape, is suppressed. In Fig. 4(a)
we still notice macro-particle orbit separation owing to the numerical heating, which is
absent from Fig. 4(b).

Shown in Fig. 5 are macro-particle trajectories computed using linear interpolation
with the addition of smoothing using a (1,2,1) filter with compensator (See Ref. [1]
Appendix C and Ref. [13]) on the current densities. As expected, we see a reduction of
the heating when the laser is polarized out of the plane of thesimulation, but significant
trajectory errors remain. This suggests that smoother particle shapes are more efficient
than smoothing for obtaining accurate trajectories.

FIGURE 5. Macro-particle orbits atωpt ≈ 55, for transverse resolutiondx = λ0/2.5 and longitudinal
resolutiondz = λ0/24, using the linear interpolation scheme and current smoothing with compensator:
(a) in the plane polarization and (b) out of the plane polarization.



PLASMA TEMPERATURE

We can distinguish two heating mechanisms [Fig. 7(c)]: scattering [14], with a con-
tinuous slow growth rate due to the finite number of macro-particles, which depends
mainly on the number of macro-particles per cell and on the particle shape; and
grid heating [15], with a fast growth rate and saturates whenλD ∼ dz in 1D, where

λD =
(

T/4πne2
)1/2

is the Debye length, anddz the grid size.
Figure 6(a) shows the transverseRMS momentum spread,σ2

ux
= 〈(ux−〈ux〉)

2〉 (where
ux = px/mec is the normalized momentum), on axis for the in and out of the plane po-
larization cases, using the linear interpolation scheme. When the laser is polarized in the
plane of the simulation, it triggers a larger momentum spread, due to the macro-particle
trajectory errors, and the grid heating saturation value isreached sooner. Figures 6(b)
and 6(c) show the resolution dependence, when the laser is polarized out of the plane.
The grid heating is reduced when the transverse resolution [Fig. 6(b)], i.e., the largest
grid size is reduced. Figure 7 shows the effect of using smoother particle shapes. The
discrepancy between in and out of the plane polarization vanishes [Fig. 7(a)], since the
momentum spread introduced by the trajectory errors is suppressed; the temperature is
much lower after the laser pulse when using smoother particle shapes [Fig. 7(b)]. The
cubic interpolation does not reduce the scattering inside the laser pulse compare to the
quadratic scheme, but the scattering growth rate is lower after the laser and the grid

FIGURE 6. Transverse momentum spread for linear particle shape: (a)dx = λ0/2.5 anddz = λ0/24 in
and out of the plane polarizations, (b)dz = λ0/24, changing transverse resolution, and (c)dx = λ0/2.5,
changing longitudinal resolution. The dashed box indicates the size of the simulation box used in Fig. 1.

FIGURE 7. Transverse momentum spread fordx = λ0/2.5 anddz = λ0/24: (a) quadratic particle shape,
in and out of the plane polarizations; (b) in the plane polarization, linear and quadratic, and (c) in the plane
polarization quadratic and cubic particle shapes.
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FIGURE 8. Amount of charge trapped (pz/mec > 1) versus resolution, withdx = dz, for different
interpolation algorithms: (square) linear interpolation, (circle) quadratic interpolation, and (triangle) cubic
interpolation. Full and empty points are for, respectively, 4 and 16 macro-particles per cell. The laser is
polarized in the plane of the simulation.

heating is delayed [Fig. 7(c)]. Increasing the number of macro-particles per cell also de-
creases the momentum spread due to scattering, for quadratic and cubic particle shapes;
the effect is not present for linear interpolation as the temperature is dominated by the
trajectory errors, when the laser is polarized in the plane of the simulation.

The results are summarized in Fig. 8 where the number of trapped macro-particles
in the 2D simulations has been normalized in order to give a charge per meter. With
linear interpolation, the amount of trapping saturates when the grid becomes sufficiently
small (dx, dz . λ0/36), i.e., reducing the grid is not sufficient to reduce the heating. One
has to use more macro-particles per cell or use smoother particle shapes because, at this
resolution, the temperature at which grid-heating saturates does not lead to significant
trapping and heating due to macro-particle scattering (which is independent on grid size)
dominates the phase-space errors. Indeed, the cubic particle shape reduces significantly
the amount of trapped charge. Moreover, it is less computationally expensive to use
smoother particle shapes than using more macro-particles.1 The case studied here is
close to the self-trapping threshold and, hence, convergence is slow; although using
the cubic particle shapes reduces the trapping to the last plasma wave bucket in the
simulation window. This means than one may need to use ratherhigh resolution to reach
convergences in some cases, especially when one wants to determine the threshold for
trapping (e.g. when studying optical injection or dark current generation).

1 Quadratic particle shapes increase the computing time by approximately 25% and there is less than a
factor of two between the computational expense of the linear and the cubic interpolation schemes.



CONCLUSION

We have demonstrated that misleading results, e.g. spurious trapping, can be obtained
with PIC codes if the resolution used is not sufficiently high, particularly when one stud-
ies phenomena close to the self-trapping threshold. We haveshown a strong dependence
of unphysical heating on the laser polarization with respect to the plane of the 2D simu-
lation. In particular, the motion of the macro-particles inthe laser pulse, when polarized
in the simulation plane, leads to trajectory errors, unlessthe longitudinal resolution is
extremely high (i.e., higher than the resolutions typically used to model laser-plasma
accelerators). Moreover, the grid heating imposes high resolution in all dimensions. We
have shown that using smoother particle shapes results in a more accurate description of
the particle motion and reduces the unphysical heating of the plasma.
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